ЛАБОРАТОРНАЯ РАБОТА № 16

Определение скорости звука методом стоячих волн в трубе

Цель работы

- изучение распространения волн в упругой среде;
- изучение явления резонанса;
- экспериментальное определение скорости звука в воздухе.

Теоретические основы работы

При распространении звуковой волны в воздухе в каждой точке пространства наблюдаются попеременно деформации сжатия и разрежения, что приводит к изменению давления в среде по сравнению с атмосферным (статическим) давлением. Переменная величина — разность между атмосферным давлением и давлением в данной точке среды называется звуковым давлением р_{3В}, которое иногда называют избыточным.

соответствует положительное Деформации сжатия звукового давления, а деформации разрежения — отрицательное. является функцией Звуковое давление времени координат: И $p(x,t) = p_0 + p_{3B}(x,t)$. На рисунке 16.1 изображены колебания давления и плотности в звуковой волне. В каждой точке среды звуковое давление действует равномерно во все стороны, является скалярной величиной и представляет собой по сути модуль силы, действующую на единицу площади поверхности. В системе СИ его измеряют в Ньютонах на квадратный метр (H/м²), что является Паскалем (Па). В системах вещания и связи имеют дело со звуковым давлением не превыщающим (для сравнения: нормальное атмосферное 760 мм рт. ст.=101 325 Па)

Расстояние λ , на которое распространяется волна за время равное периоду колебаний частиц среды T, называется длиной волны. Частицы, отстоящие друг от друга на λ , колеблются с разностью фаз равной 2π , то есть с одинаковой фазой или синфазно.

Очевидно, что $\lambda = c \cdot T$, где с - скорость волны, Т — период колебаний. Величина, обратная периоду, называется частотой или линейной частотой $v = \frac{1}{T}$. С учетом этого выражения, получаем соотношение:

$$c = \lambda \cdot v \quad . \tag{16.1}$$

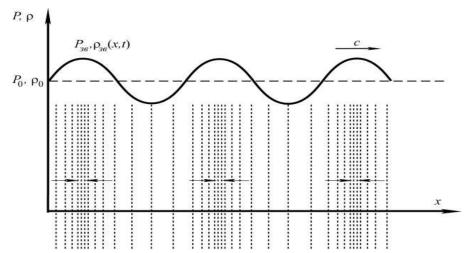


Рисунок 16.1. Колебания давления и плотности в гармонической звуковой волне связаны с образованием чередующихся областей разрежения и сгущения частиц.

Уравнение гармонических колебаний.

Каждая частица воздуха в звуковой волне совершает колебания вокруг места своего пребывания. В первом приближении каждая частица совершает <u>гармонические колебания</u> вдоль направления распространения волны:

$$\xi(t) = \xi_0 \cos(\omega \cdot t + \varphi_0) , \qquad (16.2)$$

где ξ — величина сдвига частицы из положения равновесия, где ξ_0 - это **амплитуда колебания**, а выражение в скобках под косинусом называется **фазой колебания** (обычно измеряется в радианах), ω — **фазовая частота** (не путать с линейной частотой!

$$T = \frac{1}{V} = \frac{2\pi}{\omega}$$
 или $\omega = 2 \cdot \pi \cdot V$), φ_0 - начальная фаза колебания.

Уравнение бегущей волны.

Колебания частиц в точке x_{τ} будут отставать на время $\tau = x/c$ от колебаний частиц в точке с координатой x=0, и будут иметь вид:

$$\xi(x,t) = \xi_0 \cos(\omega(t-\frac{x}{c})+\varphi_0)$$
 , где выражение в скобках $\omega(t-\frac{x}{c})+\phi_0$

называется фазой волны и определяет при заданной амплитуде состояние колебательной системы в любой момент времени.

Введем величину $k = \frac{2 \cdot \pi}{\lambda}$, называемую <u>волновым числом</u>. Умножим на частоту v числитель и знаменатель, получим волновое число в виде $k = \frac{2 \pi v}{\lambda v} = \frac{\omega}{c}$. Таким образом, <u>уравнение</u> плоской бегущей волны с учетом выражения для волнового числа и направления распространения перепишется в виде:

$$\xi(x,t) = \xi_0 \cos(\omega t \mp kx + \varphi_0) , \qquad (16.3)$$

в этой формуле амплитуда колебаний не зависит от х.

Уравнение стоячей волны.

Рассмотрим случай взаимодействия или интерференции волн при наложении двух встречных плоских волн с одинаковой амплитудой и частотой. Возникающий в результате колебательный процесс называется стоячей волной.

Если сложить две волны, движущиеся навстречу друг другу, то можно получить **уравнение стоячей волны**:

$$\xi(x,t) = 2\xi_0 \cos(2\pi \frac{x}{\lambda})\cos(\omega t) , \qquad (16.4)$$

где выражение $2\xi_0\cos(2\pi\frac{x}{\lambda})$ называется **амплитудой стоячей волны**, которая зависит от x.

Пучности и узлы стоячей волны.

В точках, координаты которых удовлетворяют условию $\cos(2\pi\frac{\chi}{\lambda})=1$ или $2\pi\frac{\chi}{\lambda}=\pm n\pi$, где (n=0,1,2,...), амплитуда колебаний достигает максимального значения $2\xi_0$. Эти точки называются пучностями волны и их координаты равны:

$$x_{nyuh} = \pm n \frac{\lambda}{2} . \tag{16.5}$$

В точках, координаты которых удовлетворяют условию $\cos(2\pi\frac{x}{\lambda})=0$ или $2\pi\frac{x}{\lambda}=\pm(n+\frac{1}{2})\pi$, где (n=0,1,2,...), амплитуда колебаний обращается в ноль всегда. Эти точки называются **узлами стоячей волны** и их координаты равны:

$$x_{y3n} = \pm \left(n + \frac{1}{2}\right) \frac{\lambda}{2}$$
 (16.6)

Поведение звуковой волны в трубе.

С одной стороны трубы поставим динамик с подвижной мембраной. А второй конец трубы закроем заглушкой.

1. Если второй конец трубы будет закрыт тяжелой <u>неподвижной</u> заглушкой, то волна отразится и пойдет обратно. Получим стоячую волну вида, как изображен на рисунке 16.2A.

Если длина трубы L, то расстояние между торцами трубы равно целому нечетному числу четвертьволн $L=(2m-1)\frac{\lambda}{4}$, где m- целое число. На рисунке 16.2A изображен ряд мгновенных положений стоячей волны плотности для последовательных значений числа m=1,2,3,4.

Теперь выведем формулу для нахождения длины волны:

$$\lambda = \frac{4L}{2m-1} \ . \tag{16.7}$$

2. Если второй конец трубы будет <u>открыт</u> или будет установлена <u>подвижная заглушка</u>, то волна отразится и пойдет обратно. Получим стоячую волну вида, как изображен на рисунке 16.2Б.

Аналогичным образом, как и п.1, можно получить, что между торцами трубы находится целое количество полуволн (см. рис. 16.2Б): $L=m\frac{\lambda}{2}$, где m — целое число. На рисунке 16.2Б изображен ряд мгновенных положений стоячей волны плотности для последовательных значений числа m=1,2,3,4.

Теперь выведем формулу для нахождения длины волны:

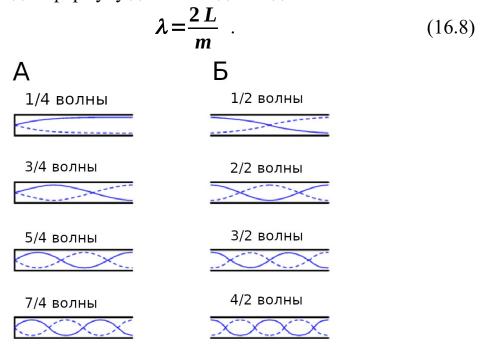


Рисунок 16.2. Схематичное изображение стоячих волн, в случае если поставим к правому концу трубы мембрану, совершающую гармонические колебания (динамик). А — левый конец трубы закрыт неподвижной заглушкой. Б — левый конец трубы открыт или там стоит подвижная заглушка. Этот случай реализован в лабораторной установке.

Явление, при котором, наблюдается увеличение амплитуды колебаний системы при совпадении частоты внешнего воздействия с собственной частотой называется резонансом. Определение скорости звука в настоящей работе основано на измерении разностей двух соседних частот, для которых имеет место усиление сигнала на приемнике звука. Согласно (16.1), (16.7) и (16.8) соответствующая расчетная формула имеет вид

$$c = 2L \overline{\Delta v} , \qquad (16.9)$$

где c - скорость звука, L - длина трубы, $\overline{\Delta \nu}$ — среднее значение разностей соседних частот, на которых наблюдается резонансное усиление звука.

Экспериментальная установка.

Основные элементы экспериментальной установки, изображенной на рисунке 16.3:

- 1. Звуковой генератор (ЗГ).
- 2. Динамик источник звуковых волн.
- 3. Труба акустический резонатор.
- 4. Микрофон.
- 5. Индикатор уровня звука или осциллограф.

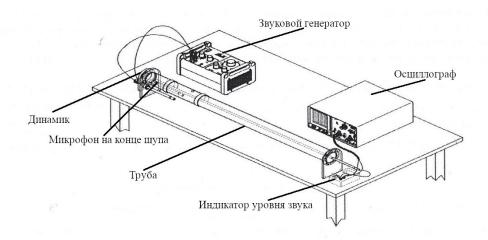


Рисунок 16.3. Внешний вид установки.

Для проведения измерений используется установка, изображенная на рисунке 16.3.

Практическая часть

Перед началом работы

- 1. Убедитесь, что прибор «индикатор уровня звука» работает. Для этого включите его с помощью тумблера, экран должен начать тускло подсвечиваться встроенным светодиодом. Если этого не произошло, то сообщите учителю.
- 2. Ознакомьтесь с установкой. Заполните таблицу спецификации измерительных приборов.

Таблица 16.1. Спецификация измерительных приборов.

СПОЦ	пфикации измеритель	mpine ope			
№ π/π	Наименование прибора	Измеряемая величина	Предел измерений	Цена деления	Погрешность средства измерений
1	Генератор звуковой частоты модель:				
2	Линейка на установке				
3	Индикатор уровня звука (или осциллограф)				

3. Уточните у учителя, какие опыты Вам необходимо выполнить.

Опыт 1А.

Определение скорости звука в воздухе.

- 1. Установите на генераторе значение $v_1 = 1000 \, \Gamma y$.
- 2. Двигая подвижную заглушку при помощи щупа с микрофоном, добейтесь эффекта резонанса. Для этого:
 - 2.1. Включите индикатор звука.
 - 2.2. Выдвиньте щуп из установки так, чтобы его конец уперся в подвижную заглушку. Поверните щуп так, чтобы его выступ попал в углубление заглушки и поверните щуп вокруг оси на 1/6 оборота. Теперь Вы можете двигать щупом заглушку.
 - 2.3. Передвиньте заглушку примерно в середину трубы.
 - 2.4. Теперь очень медленно сдвигайте заглушку, пока показания стрелки на индикаторе звука не начнут расти. Найдите положение заглушки, когда стрелка покажет максимальное значение. Это положение подвижной заглушки и будет соответствовать искомому положению. Запишите положение заглушки в таблицу.
- 3. Теперь поверните щуп в другую сторону, чтобы освободить заглушку.

- 4. Перемещайте щуп с микрофоном в сторону динамика, заглушка должна быть неподвижна. Отметьте место, где встретили первый минимум, занесите данные в *таблицу* 16.2. Далее найдите следующий минимум и занесите его положение в таблицу.
- 5. Повторите *пункт* 4 еще <u>четыре</u> раза.
- 6. Заполните *таблицу* 16.2 до конца. Обозначения в таблице: L_1 позиция первого минимума, L_2 позиция соседнего минимума, ΔL расстояние между соседними минимумами, λ длина звуковой волны, с скорость звука.

№ п/п	L ₁ , см	L ₂ , cm	ΔL , см	λ,м	с, м/с
1			///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////
2			///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////
3			///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////
4			///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////
5			///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////
среднее					

Обработка результатов опыта 1А

- 1. Рассчитайте средние значения L_1 и L_2 .
- 2. Найдите значение ΔL .
- 3. Рассчитайте значение λ по формуле (16.8).
- 4. Рассчитайте значение с по формуле (16.1).
- 5. Запишите приборную погрешность частоты звука $\Delta v = \Gamma$ ц.
- 6. Запишите приборную погрешность $\Delta L_{1 \text{ пр}} =$ см.
- 7. Запишите приборную погрешность $\Delta L_{2 \text{ пр}} =$ см.
- 8. Рассчитайте и запишите случайную погрешность $\Delta L_{1\,cn} =$ см. (см. 16.13)
- 9. Рассчитайте и запишите случайную погрешность $\Delta L_{2\,cn} =$ см. (см. 16.13)
- 10. Рассчитайте и запишите полную погрешность $\Delta L_1 = \text{ см. (см. 16.14)}$
- 11. Рассчитайте и запишите полную погрешность $\Delta L_2 =$ см. (см. 16.14)
- 12. Рассчитайте и запишите погрешность ΔL . $\Delta(\Delta L) =$ см (см. 16.10)
- 13. Рассчитайте и запишите погрешность λ . $\Delta \lambda = -$ см (см. 16.12)

- 14. Рассчитайте и запишите погрешность скорости звука $\Delta c = m/c$ (см. 16.11)
- 15. Запишите ответ для полученного Вами значения скорости звука в виде доверительного интервала

 $c = \underline{\qquad} \pm \underline{\qquad} M/c.$

Опыт 1Б

Определение скорости звука в воздухе.

- 1. Установите на генераторе значение $v_2 = 4000 \, \Gamma y$.
- 2. Повторите *пункты* 2-6 опыта 1A для этой частоты и заполните mаблицу 16.3.

Таблица 16.3.

Измерение скорости звука в воздухе для частоты $v_2 = 4000 \, \Gamma q$.

Координаты заглушки при резонансе: $L = \dots \pm \dots \pm \dots$ см.

N	L ₁ , см	L ₂ , см	ΔL , CM	λ,м	с, м/с
1			///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////
2			///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////
3			///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////
4			///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////
5			///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////
среднее					

Обработка результатов опыта 1Б выполняется аналогично опыту 1А.

Опыт 2

Нахождение узлов и пучностей для стоячей звуковой волны

- 1. Установите на генераторе значение $v_3 = 2000 \, \Gamma y$.
- 2. Найдите положение подвижной заглушки возле закрытого конца трубы, когда возникает эффект резонанса для этой частоты (повторите пункт 2 из опыта 1А). Найдите резонанс, когда заглушка установлена далеко от динамика.
- 3. Теперь поверните щуп в другую сторону, чтобы освободить заглушку. Запишите координату заглушки в таблицу 16.4, это и будет являться первым максимумом. Заглушка должна оставаться на месте в течение всего эксперимента.
- 4. Перемещайте щуп с микрофоном в сторону динамика. Отметьте место, где встретили первый минимум, занесите данные в *таблицу* 16.4.
- 5. Далее найдите следующий максимум и занесите это в таблицу.
- 6. Продолжайте искать минимумы и максимумы, пока не достигните динамика. Размер таблицы может быть больше или меньше указанного ниже. Все зависит от точки, где поставите заглушку.

Номер максимума или минимума	Координата максимума L_{max} , см	Координата минимума L_{min} , см
1		///////////////////////////////////////
2		
3		
4		
5		
6		
7		
8		
///////////////////////////////////////	///////////////////////////////////////	

Обработка результатов опыта 2

- 1. Нарисуйте схематично изображение резонатора (от положения заглушки до динамика) и положения пучностей и узлов в нем (аналогично рисунку 16.2).
- 2. Найдите длину резонатора, найдите сколько воли уместилось в резонаторе n = .
- 3. По рисунку найдите длину волны $\lambda =$ м.
- 4. Найдите скорость звука: c = m/c.(16.1)
- 5. Приборная погрешность частоты v = Гц.
- 6. Запишите приборную погрешность определения точки L_{max} (начало резонатора) $\Delta l_{max} = c M$.
- 7. Запишите приборную погрешность определения точки L_{min} (конец резонатора) $\Delta l_{min} = c M$.
- 8. Рассчитайте и запишите погрешность λ . $\Delta \lambda =$ см (см. 16.10)
- 9. Рассчитайте и запишите погрешность скорости звука $\Delta c = m/c$ (см. 16.11)
- 10. Запишите ответ для полученного Вами значения скорости звука в виде доверительного интервала

c =	\pm	M/C

Опыт 3

Определение скорости звука при помощи «соседних» резонансов.

- 1. Установите на генераторе значение $v_3 = 2000 \, \Gamma y$.
- 2. Найдите положение подвижной заглушки возле закрытого конца трубы, когда возникает эффект резонанса для этой частоты (повторите пункт 2 из опыта 1А). Запишите полученное значение в *таблицу* 16.5.
- 3. Теперь вращайте ручку генератора, отвечающую за изменение частоты, в сторону увеличения частоты. При помощи прибора «индикатор уровня звука» определите следующую частоту резонанса. Эту частоту занесите в *таблицу* 16.5.
- 4. Повторите *пункт 3* еще пять раз.

Таблица 16.5

Номер резонанса	Частота резонанса, Гц	Разность между соседними резонансными частотами Δν, Гц
1		///////////////////////////////////////
2		
3		
4		
5		
6		
среднее	///////////////////////////////////////	

Обработка результатов опыта 3

1.	Найдите	среднее з	начение	разности	и между	соседними
	резонансны	ми частотамі	и $\overline{\Delta \nu}$ и	запишите	в таблицу.	
2.	Найдите ско	орость звука	по форму	уле (16.9), i	где L – длина	резонатора
	от заглушки	и до динамик	a: c=			M/c.
3.	Приборная	погрешно	сть коо	рдинаты	подвижной	заглушки
	$\Delta L_{33\Gamma\Pi} =$				CM.	

4.	Приборная пог	решность	определения	длины	резонатора	(от
	заглушки до дина	амика): ΔL	=			CM.
5.	Приборная погре	шность ча	стоты $\Delta v_1 =$			Γц.
6.	Приборная погре	шность ра	зности частот /	$\Delta v_{\pi p} =$	Гц.(16	5.10)
7.	Случайная погре	шность раз	вности частот ∆	$ u_{\text{cn}} = \overline{} $	 Гц.(16	.14)
8.	Итоговая погреш	ность разн	ости частот Δv	=	 Гц.(16.	14)
9.	Итоговое значени	ие: c =		±		

Выводы для всей работы

- 1. Запишите полученные итоговые результаты (для всех выполненных опытов в одном месте).
- 2. Сравните полученные результаты с табличными значениями (не забудьте указать сами табличные значения).
- 3. Сформулируйте вывод работы.

Контрольные вопросы

- 1. Что такое волна? Какие волны называются продольными? Какие волны называются поперечными?
- 2. Запишите уравнение гармонических колебаний, объясните смысл входящих в него величин.
- 3. Запишите уравнение бегущей волны, объясните смысл входящих в него величин.
- 4. Запишите уравнение стоячей волны, объясните смысл входящих в него величин.
- 5. Что представляют собой звуковые волны? Что в них колеблется?
- 6. Что такое интерференция волн? При каких условиях её можно наблюдать?
- 7. Как получаются стоячие звуковые волны? Приведите несколько примеров.
- 8. Сформулируйте условия пучностей и узлов в стоячей волне.
- 9. Как использовано явление интерференции волн в данной работе?
- 10. Чем отличается резонатор с открытым концом от резонатора с закрытым концом? Чем отличается стоячая звуковая волна в таких резонаторах.

Используемые методы теории погрешности

1. Если функция задана формулой вида $f(a,b)=a\pm b$, то значение абсолютной погрешности такой функции задается формулой

$$\Delta f = \sqrt{(\Delta a^2 + \Delta b^2)} \quad , \tag{16.10}$$

где Δa и Δb — абсолютные погрешности аргументов a и b.

2. Если функция задана формулой вида $f(a,b)=a\cdot b$ или $f(a,b)=\frac{a}{b}$, то значение относительной погрешности этой функции задается формулой:

$$\delta f = \sqrt{\delta a^2 + \delta b^2} \quad , \tag{16.11}$$

где δa и δb — относительные погрешности аргументов a и b.

3. Если функция f(a) от одной переменной, то относительная погрешность этой функции равна относительной погрешности аргумента:

$$\delta f = \delta a \quad . \tag{16.12}$$

4. Определение случайной погрешности:

$$\Delta x_{\text{cn.}} = K_{\text{стьюд}} \sqrt{\frac{\sum_{i=1}^{N} (x_{\text{cp.}} - x_i)^2}{N(N-1)}} ,$$

(16.13)

где $K_{\text{стьюд}}$ - коэффициент Стьюдента, N - количество измерений, $x_{\text{ср.}}$ - среднее значение, а x_i - значение x в первом, втором и т. д. эксперименте.

5. Итоговая погрешность складывается из приборной и случайной погрешностей:

$$\Delta x = \sqrt{\Delta x_{cn.}^2 + \Delta x_{npu6.}^2} \quad . \tag{16.14}$$