Экзаменационная работа за курс 8 класса Демонстрационный вариант

Часть 1. В задании А1 ответом служит последовательность из 3 чисел. В задании А2 необходимо записать только ответ, выраженный в указанных единицах измерения. В заданиях А3,4,5 ответом является перечень номеров правильных утверждений без запятых, пробелов или других символов.

Часть А. В заданиях А2, А5, А6 решить задачу и записать правильный ответ с учётом единиц измерения. Решения на чистовике записывать не нужно

А1. Имеется некоторая масса льда в твёрдом состоянии и такая же масса воды в жидком состоянии при той же температуре. Установите соответствие между физическими величинами и их значением в различных агрегатных состояниях. Каждому элементу из левого столбика поставьте в соответствие один элемент из правого столбика. Числа в ответе могут повторяться.

Физическая величина	Значение величины	
А) Расстояние между молекулами;	1) Больше у твёрдого вещества;	
Б) Потенциальная энергия взаимодействия	2) Больше у жидкого вещества;	
молекул;	3) Одинаковы	
В) Молярная масса.		

А2. Два одинаковых заряда на расстоянии 4 см взаимодействуют с силой 8,1 мкН. Определите величину каждого заряда в нанокулонах. _____ нКл.

А3. Используя данные таблицы, выберите из предложенного перечня два верных утверждения. Укажите их номера.

вещество	Плотность в твёрдом состоянии *, г/см3	Температура плавления, °С	Удельная теплоёмкость, Дж/(кг °C)	Удельная теплота плавления. кДж/кг
Алюминий	2,7	660	920	380
Медь	8,9	1083	400	180
Свинец	11,35	327	130	25
Серебро	10,5	960	250	87
Сталь	7,8	1400	500	78
Олово	7,3	232	250	59
Цинк	7,1	420	400	120

^{*} Плотность расплавленного металла считать практически равной его плотности в твердом состоянии.

1) Кольцо из серебра можно расплавить в алюминиевой посуде.

- 2) При нагревания на 50 °C оловянной ложки потребуется в 1,44 раза меньшее количество теплоты, чем при нагревании на такую же температуру серебрянной ложки такого же объёма;
- 3) Для плавления 3 кг цинка, взятого при температуре плавления, потребуется такое же количество теплоты, что и для плавления 2 кг меди при температуре её плавления.
- 4) Стальной шарик будет плавать в расплавленном свинце при частичном погружении.
- 5) Алюминиевая проволока утонет в расплавленной меди.
- **А4.** С некоторой постоянной массой идеального газа происходит процесс, график которого изображён на рисунке. Из предложенного перечня утверждений выберите 2 правильных. Укажите их номера.
- 1) Участки 12 и 34 являются изобарами; в изохорном процессе газ нагревается;
- 2) Участок 12 является изотермой; на участке 34 давление растёт;
- 3) График состоит из двух изохор и одной изотермы; давление газа на участке 23 уменьшается;
- 4) Участок 34 является изобарой, так как он лежит на прямой, проходящей через начало координат; в изотермическом процессе давление увеличивается;
 - 5) участок 23 является изотермой; давление в точке 4 меньше, чем в точке 1.
 - **А5.** Сопротивления резисторов в цепи $R_1 = 2$ Ом, $R_2 = 1$ Ом, $R_3 = 14$ Ом. Напряжение на третьем резисторе равно 9 В. Определите напряжение на первом резисторе.

Ответ _____ В

А6. Резисторы R_1 = 50 Ом и R_2 = 10 Ом соединены последовательно . Какая мощность выделяется в резисторе R_1 , если в резисторе R_2 выделяется мощность 15 Вт ?

Rз

Ответ Вт

А7. Учитель на уроке, используя катушку, замкнутую на гальванометр, и полосовой магнит (рис. 1), последовательно провёл опыты 1 и 2 по наблюдению явления электромагнитной индукции. Описание действий учителя и показания гальванометра представлены в таблице.

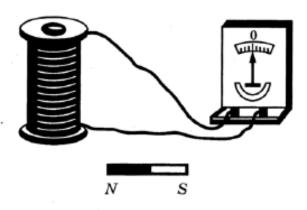
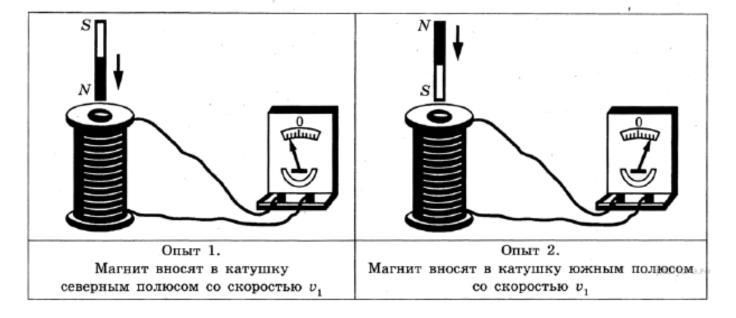
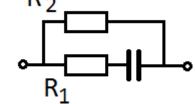



Рисунок 1.

Какие утверждения соответствуют результатам проведённых экспериментальных наблюдений? Из предложенного перечня утверждений выберите два правильных. Укажите их номера.

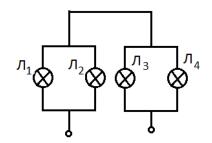

- 1) Величина индукционного тока зависит от геометрических размеров катушки.
- 2) При изменении магнитного потока, пронизывающего катушку, в катушке возникает электрический (индукционный) ток.
- 3) Величина индукционного тока зависит от скорости изменения магнитного потока, пронизывающего катушку.
- 4) Направление индукционного тока зависит от того, увеличивается или уменьшается магнитный поток, пронизывающий катушку.
- 5) Направление индукционного тока зависит от направления магнитных линий изменяющегося магнитного потока, пронизывающего катушку.

Часть В - С Представьте полное решение задачи со всеми необходимыми выкладками и рисунками.

Каждая задача В – по 2 балла, С – по 3 балла.

B1. Некоторую массу олова можно нагреть от 0 ° C до 100 ° C за 20 секунд. Сколько понадобится времени, чтобы с помощью этого же нагревателя эту же массу олова, взятого при 0 ° C довести до плавления и наполовину расплавить?

- **B2.** В калориметр, содержащий 200 г воды при температуре t_1 = 20 °C, опустили медное тело массой 500 г при температуре t_2 = 200 °. Определите температуру, установившуюся в калориметре, если теплоёмкость калориметра равна 1000 Дж/°C.
- **B3.** Какую массу алюминия, взятого при температуре 60 °C можно расплавить, сжигая 2 тонны каменного угля, если КПД составляет 70 %?
- **В4.** Конденсатор ёмкостью C = 2 мкФ и два резистора сопротивлением $R_1 = 10$ Ом и $R_2 = 5$ Ом соединены, как показано на рисунке. В общем проводе течёт ток силой 1 А. Определите:



- 1) заряд конденсатора;
- 2) энергию конденсатора.
- **B5.** Лампу, номинальной мощностью 24 Вт, рассчитанную на напряжение 12 В, требуется включить в сеть, напряжением 220 В. Какой длины нихромовый провод надо взять для этого, если площадь провода 0,2 мм²?
- **В6.** К шару незаряженного электрометра поднесли, не касаясь, положительно заряженную палочку. Затем, не убирая палочки, коснулись шара пальцем с противоположной от палочки стороны, убрали палец и только после этого убрали палочку.

Из предложенных ниже утверждений выберите 2 верных:

- 1) Часть электронов под действием электрического поля палочки перешла с шара на палочку, зарядив шар положительным зарядом;
- 2) Под действием электрического поля палочки часть электронов с пальца перешла на шар;
 - 3) В конце электрометр получил суммарный положительный заряд;
 - 4) Касание пальца никак не повлияло на заряд электрометра;
 - 5) Если бы палец убрали раньше, чем палочку, то электрометр не зарядился бы.
- **C1.** Сколько льда, взятого при 0 °С, можно расплавить стоградусным водяным паром, массой 200 г при нормальном атмосферном давлении, если
 - 1) теплоёмкостью сосуда и тепловыми потерями можно пренебречь;
 - 2) теплоёмкостью сосуда можно пренебречь, а потери тепла составляют 20 %;
- 3) теплоёмкость сосуда, в котором первоначально находился лёд, равна C = 5 кДж/°C, а потери тепла составляют 20 %.

С2. Электрические лампы Π_1 , Π_2 , Π_3 , Π_4 с мощностями соответственно P_1 = 50 BT, P_2 = 25 BT, P_3 = 100 BT, P_4 = 50 BT рассчитанные на напряжение U_0 = 200В каждая, включены в сеть напряжением 200 В. Определите:

- 1) Напряжение на лампах 1 и 4;
- 2) Мощность всей цепи;
- 3) Мощность, выделяемую на лампе 1.